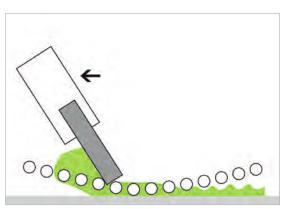
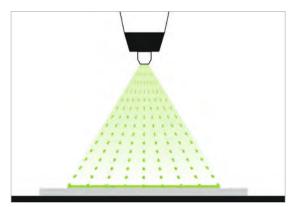
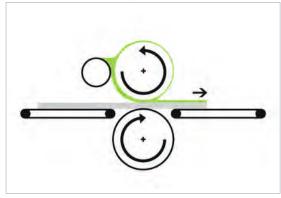


/ BrazeTec Lotpastensysteme


Für innovative Verbindungsmöglichkeiten bietet BrazeTec zusätzlich zu den Festloten Lote in Form von Pasten an. Eine Lotpaste ist eine homogene, gebrauchsfähige Mischung aus metallischem Lotpulver und Lösungsmitteln. Hinzugefügte Polymere und Additive verhindern das Absetzen des Lotpulvers und bestimmen das Applikations- und Ablaufverhalten der Lotpaste. Für die Applikation stehen entsprechend der Aufgabenstellung die unten aufgeführten Verfahren zur Verfügung.

BrazeTec bietet für diese Applikationsverfahren maßgeschneiderte Lotpastensysteme an. Hierzu wurde eine Vielzahl von Bindersystemen und Lotpastenrezepturen entwickelt, die für spezifische Kundenprozesse weiter angepasst werden können. Lotpasten sind besonders für automatisierte Lötprozesse attraktiv, da sie leicht in einen Produktionsprozess integriert werden können. Sie ermöglichen sowohl für Klein- als auch Großserienfertigung einen optimalen Materialeinsatz.


/ Applikationsverfahren


D = Dispensen

P = Siebdruck

S = Sprühen

R = Rollercoating

/ BrazeTec Silberbasis Hartlotpasten

Die silberbasierenden flussmittelhaltigen BrazeTec Lotpasten sind zum Löten beliebiger Stähle, Kupfer sowie Nickel- und Kupferlegierungen einsetzbar. Sie können mit Dispensern oder im Siebdruck aufgetragen werden. Die angegebenen Lotpasten sind standardmäßig verfügbar und je nach Anwendung flussmittelhaltig bzw. flussmittelfrei. Weitere Legierungen sind auf Anfrage lieferbar.

Bezeichnung	chnung Zusammensetzung in Gewicht-%						Schmelzbereich nach DSC	Löttemp. min.	ISO 17672	Besonderheiten der Anwendung					
	Ag	Cu	Zn	Mn	Ni	Sonst.	in °C	in °C	in °C						
BrazeTec D 7200	72	28	-	-	-	-	780	780	780	Ag 272	Beliebige Stähle, Cu-Ni- & Ni-Legierungen				
BrazeTec D 5600	56	22	17	-	-	5 Sn	630 - 655	620 – 655	655	Ag 156	Beliebige Stähle, Cu-Ni- & Ni-Legierungen				
BrazeTec D 4900	49	16	23	7.5	4.5	-	680 - 705	680 – 705	690	Ag 449	Hartmetalle				
BrazeTec D 4576	45	27	25,5	-	-	2.5 Sn	645 - 695	640 - 680	695	Ag 145	Beliebige Stähle, Cu-Ni- & Ni-Legierungen				

/ BrazeTec Kupferbasis Hartlotpasten

Bezeichnung			nsetzu icht-%			Schmelz- bereich nach DSC	Schmelz- bereich nach IS 17672	Löt- temp.	ISO 17672	Lot	tatmo	sphäi	re ¹⁾	Besonderheiten der Anwendung
	Ag	Sn	Ni	Р	Ag	in °C	in °C	in °C						
BrazeTec D 801	100	-	-	-	-	1.085	1.085	1.120	Cu 110	•				Beliebige Stähle, Ni und Ni-Legierungen
BrazeTec D 807	80	-	-	5	15	645 – 800	645 – 800	720	CuP 284	•	-	•	•	Cu und Cu-Legierungen
BrazeTec D 810	92	-	-	8	-	710 – 770	710 – 770	750	CuP 182	•	•	•	-	Cu und Cu-Legierungen

Der CuproBraze®-Prozess wurde speziell zum flussmittelfreien Hartlöten von Kupfer-Messingkühlern in Schutzgasöfen entwickelt. Als Lot kommt eine phosphorhaltige Kupferlegierung zum Einsatz. Die so hergestellten Kühler weisen hohe Festigkeiten auch bei hohen Einsatztemperaturen auf. Die verschiedenen lösungsmittelbasieren-

den Pasten können durch Sprühen auf den Rohren (BrazeTec CST 600 TD) oder durch spezielle Rollprozesse auf den Lamellen aufgetragen werden. BrazeTec CSH 610 TD wird zum Löten der Rohre an die Anschlussbleche eingesetzt. Selbstverständlich können die Lotpasten auch für Cu-Cu-Lötungen verwendet werden.

Lotpastensyst	Lotpastensysteme für den CuproBraze®-Prozess													
BrazeTec CST 600 TD	76	15.6	4.2	5,3	-	590 – 610	-	650	-	•	-	•	-	Paste zur Vorbelotung von Rohren mittels Sprühauftrag für den CuproBraze®-Prozess
BrazeTec CSF 600 TD	76	15.6	4.2	5,3	-	590 - 610	-	650	-	•	-	•	-	Paste zur Vorbelotung der Lamellen mittels Walzenauftrag für den CuproBraze®-Prozess
BrazeTec CSH 610 TD	78.5	9.3	5.7	6,5	-	595 – 620	-	650	-	•	-	•	-	Paste zur Vorbelotung der Anschlussbleche im CuproBraze® Prozess, 2% Flussmittelanteil
BrazeTec CSO 610.2 TD	78.5	9.3	5.7	6,5	-	595 – 620	-	650	-	•	-	•	-	Paste zum Löten der Anschlusskästen mittels Dispenser im CuproBraze® Prozess, 2% Flussmittelanteil

 $^{^{11}}$ A = trockener Wasserstoff B = Vakuum = H_2N_2 -Gasatmosphären (Taupunkt –30 °C) D = Exogas

/ BrazeTec Nickelbasis Hartlotpasten

Die modernen BrazeTec-Applikationssysteme können für nahezu alle bekannten pulverförmigen Nickelbasis-Lote angewandt werden. Die oben aufgeführten Produkte sind standardmäßig verfügbar. Abwandlungen der Standardlegierungen sind auf Nachfrage in enger Absprache mit dem Kunden möglich. Anwendungen der BrazeTec Nickelbasis-Lotpasten kommen u.a. aus dem Wärmetauscher- und Kfz-Bereich.

Bezeichnung	Zusammensetzung in Gewicht-%						Schmelzbereich bereich nach IS 17672 nach DSC		Löttemp. ISO 17672			tatmo häre		Lös telb	likati ungsi asiero Paste	erfahren ²⁾ Wasser- basie- rende Pasten		
	Ni	Cr Fe Si B P in °C in °C in °C			Α	В	С	Р	R	S	D	S						
BrazeTec 897	76	14	-	-	-	10	890	890	980	Ni 710	•	•	•	•	-	•	•	•
BrazeTec 1002	82.4	7	3	4.5	3.1	-	970 – 1.000	970 – 1.000	1.050	Ni 620	•	•	-	•	•	•	•	•
BrazeTec 1090	60	30	-	4	-	6	980 – 1.040	-	1.090	-	•	•	•	-	•	-	•	•
BrazeTec 1130	72	18	-	8	-	2	1.050 – 1.090	-	1.080	-	•	•	•	-	-	-	•	-
BrazeTec 1135	70.9	19	-	10.1	-	-	1.080 – 1.135	1.080 – 1.135	1.190	Ni 650	•	•	•	•	•	•	•	•

 $^{^{11}}$ A = trockener Wasserstoff B = Vakuum C = H_2N_2 -Gasatmosphären (Taupunkt -30 °C) 21 D = Dispensen P = Siebdruck S = Sprühen R = Rollercoating

SAXONIA Technical Materials GmbH

Rodenbacher Chaussee 4 63457 Hanau Deutschland

Tel. +49 6181 9061-0 Fax +49 6181 9061-4000

technical.materials@saxonia-tm.de www.saxonia-tm.de